
 

www.iaset.us                                                                                                                                                                                                        editor@iaset.us 

 

APPROXIMATE SOLUTION TO MELTING ICE PROBLEM VIA ADOMIAN 

DECOMPOSITION METHOD 

Ahmed Ismail Mohammed 

Department of Mathematics, Basic Education College, Misan University, Iraq 

 

ABSTRACT 

In this concordance, Adomian Itemization techniques, microwave-prepared to various enliven obstructions in 

consistence movement in charge to come into ownership of an inexact express arrangement anent respect to Melting Ice 

issue. The crushing approximations of Adomian Crack-up draw close to going up against assign accordingly go astray the 

hindrance assets of the moving limit esteem issue are fulfilled. Note the lack of cardinal issuing, the side-effect means are 

classified and graphically contrasted with these due to a few creators. The numerical front profit oneself of our advantage 

indicated indubitably acceptable concurrences with others, less disturbed few bases have been adjusted. 
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1. INTRODUCTION 

The term moving limit issues (MBP's) are usually utilized when the limit is related with time subordinate issues 

and the limit of the area isn't known in cutting edge however must be resolved as an element of time and space.                        

Moving limit issue have gotten much consideration because of their viable significance in designing and science [12]. 

These issues wind up a nonlinear due present of moving limit [6] and consequently their scientific express arrangement are 

hard to get when all is said in done. 

Stefan issues (stage change issues) is one class of moving limit esteem issue and in addition, application,             

See Crank[7] and Hill[9]. The class of Stefan issue (MBP'S) is fascinating a direct result of its nonlinearity nature that is 

related to the moving interface has appeared in [6]. Because of the essence of moving interface, their correct arrangement 

is restricted. Along these lines, Many rough arrangements have been utilized to take care of this issue numerical        

[4],[5],[17-20], Stefan issues with time-subordinate limit condition requires some uncommon procedures. In [19], [20], 

[24]. Savovic and Caldwell [22] exhibited limited distinction arrangement of one-dimensional Stefan issue with occasional 

limit conditions. Ahmed [3] talked about another calculation for moving limit issue subject to intermittent limit conditions.       

In 2009, Rajeev et al. [15] utilized variational emphasis strategy to take care of a stage change issue with a time 

subordinate limit condition and the outcome is gotten in term of Mittag-Leffler work. In 2012 Rajeev and M.S. Kushwaha 

[14] utilized adomaian disintegration strategy to take care of a Stefan issue with the intermittent limit condition. In 2014 
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Radhi A.Zaboon and Ahmed I. Mohammed[21] utilized Homotopy Perturbation Method to fathom one – dimensional 

stage change issue with non – uniform introductory temperature. 

In this paper, an inexact unequivocal approach is intrigued by means of an Adomian Decomposition strategy with 

a few changes the acquired outcomes are contrasted and the correct arrangement [23]. 

2. DESCRIPTION OF THE PROBLEM (MELTING ICE) [23] 

The issue of dissolving because of the warmth contribution at a settled limit have been utilized as a part of 

Furzeland [13] and others, as a moving limit esteem issue (Stefan writes issue) of one stage change issue without 

introductory condition, and can be available as takes after:   

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
=

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2 , 0 < 𝑥 < 𝑠(𝑡),     0 <  𝑡 < 1                                                                                                          (𝟏) 

Subject to the limit conditions: 

𝑢𝑥(0, 𝑡) = −𝑒𝑡 , 𝑡 > 0                                                                                                      (𝟐) 

𝑢(𝑠(𝑡), 𝑡) = 0, 𝑡 > 0                                                                                                                                                      (3) 

−
𝜕𝑢(𝑠(𝑡),𝑡)

𝜕𝑥
=

𝑑𝑠(𝑡)

𝑑𝑡
, 𝑡 > 0                                                                                                                                                    (4) 

Also, the moving limit is subjected to: 

𝑠(0) = 0                                                                                                                                                                                       (5) 

Where u (x.t) is the temperature at remove x and time t, s(t) being the situation of the interface at time t 

3. ANALYSIS OF ADOMIAN DECOMPOSITION METHOD WITH (SIMPLE ALGORITHM)  

Think about the condition  

F(u(x) )=g(x)                                                                                                                         (6) 

Where F speaks to a general nonlinear customary or fractional differential administrator, including both straight 

and nonlinear terms, and g is a given capacity. The direct terms in F(u(x)) are deteriorated into Lu+Ru, where L is an 

effortlessly invertible administrator (more often than not the most noteworthy request subordinate), and R is the rest of the 

straight administrator. In this way, the condition (6) can be composed as 

𝐿𝑢 + 𝑅𝑢 + 𝑁𝑢 = 𝑔                                                                                                                                                                  (7) 

Where, Nu shows the nonlinear terms. By fathoming this condition (7) for Lu, since L is invertible, and applying 

the backward administrator 𝐿−1on the two sides yields 

𝑢 = 𝐴 + 𝐿−1(𝑔) − 𝐿−1(𝑅𝑢) − 𝐿−1(𝑁𝑢),                                                                                                                       (𝟖) 

Where A can be found from the limit or introductory conditions.  

Adomian strategy expects the arrangement u can be ventured into infinite series as,  

𝑢 = ∑ 𝑢𝑛
∞
𝑛=0                                                                                                                                                                         (9) 

And 𝐹(𝑢) as the summation of a series, say;  
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𝐹(𝑢) = ∑ 𝐴𝑛(𝑢0, 𝑢1, … , 𝑢𝑛)∞
𝑛=0                                                                                                                                       (10) 

Where𝐴𝑛’s, called Adomian polynomials, has been introduced by the Adomian himself by the formula:  

𝐴𝑛(𝑢0, 𝑢1, … , 𝑢𝑛) =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
[𝐹(∑ 𝑢𝑖𝜆𝑖

∞
𝑖=0 )]𝜆=0                                                                                                               (11) 

Numerous computational algorithms are accessible to process adomian polynomial, for instance [1], 

[2],[8],[11],[25]. In [10] given an appropriate and more straightforward one, along these lines, we have received this 

algorithm and as takes after for computing 𝐴0, 𝐴1, … 𝐴𝑛 

Step 1: Input nonlinear term F(u) and n, the number of Adomian polynomial needed. 

Step 2:  Set 𝐴0  =  𝐹(𝑢0)  

Step 3: For 𝑘 =  0 to 𝑛 −  1 do:  

    𝐴𝑘(𝑢0, 𝑢1, … 𝑢𝑘) ≔ 𝐴𝑘(𝑢𝑜 + 𝑢1𝜆, … , 𝑢𝑘 +                     (𝑘 + 1)𝑢𝑘+1𝜆) 

{𝑖𝑛 𝐴𝑘 ∶ 𝑢𝑖 →  𝑢𝑖 + (𝑖 + 1)𝑢𝑖+1𝜆      𝑓𝑜𝑟 𝑖 =                       0,1, … , 𝑘  } 

Step 4: Taking the first order derivative of 𝐴𝑘, with respect to 𝜆, and then let   

     𝜆 = 0:
𝑑

𝑑𝜆
𝐴𝑘|𝜆=0 = (𝑘 + 1)𝐴𝑘+1 

                                                    End do 

  Step 5: Output  𝐴0, 𝐴1, … 𝐴𝑛 . 

  According to the above Algorithm, Adomian polynomials will be computed as follows: 

𝐴0 = 𝐹(𝑢0) 

𝐴1 =
𝑑

𝑑𝜆
𝐹(𝑢0 + 𝑢1𝜆)|𝜆=0 = 𝑢1�́�(𝑢0), 

𝐴2 =
1

2

𝑑

𝑑𝜆
((𝑢1 + 2𝑢2𝜆)�́�(𝑢0 + 𝑢1𝜆))|

𝜆=0
= 𝑢2�́�(𝑢0) +

𝑢1
2

2!
�́́�(𝑢0),                                                                               (12) 

And so on. The components of 𝑢𝑛 , 𝑛 ≥ 1. 

Remarks 1 

• 𝑢(𝑠(𝑡), 𝑡) = 0, determined the heat distribution at the moving interface equals to zero  

• Due to the presence of the moving boundary (1)-(5), the problem is highly nonlinear. 

• The initial domain of interest is of length 0, (0 < 𝑥 < 𝑠(0) = 0) at t=0. 

4. DETERMINATION OF THE NO MINAL SOLUTION 𝒖𝟎(𝒙, 𝒕) AND 𝒔𝟎(𝒕) 

The nominal solution 𝑢0(𝑥, 𝑡) and 𝑠0(𝑡) which are needed for ADM are suggested as follows: 

From the Stefan condition (4), we have that 

𝑑𝑠(𝑡)

𝑑𝑡
= −

𝜕𝑢(𝑠(𝑡), 𝑡)

𝜕𝑥
, 𝑡𝜖[0,1] 
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That 𝑠(𝑡) ≅ 𝑠0(𝑡) and at 𝑡 = 0, we have 𝑢(𝑥, 𝑡) ≅ 𝑢0(𝑥, 𝑡) 

𝑑𝑠0(𝑡)

𝑑𝑡
|

𝑡=0

= −
𝜕𝑢0(𝑠0(𝑡), 𝑡)

𝜕𝑥
|

𝑡=0

 

𝑑𝑠0(𝑡)

𝑑𝑡
|

𝑡=0

= −
𝜕𝑢0(𝑠0(0), 0)

𝜕𝑥
, from(5) 

𝑑𝑠0(𝑡)

𝑑𝑡
|

𝑡=0

= −
𝜕𝑢0(0,0)

𝜕𝑥
, from(2) 

 ∫
𝑑𝑠0(𝑡)

𝑑𝑡
|

𝑡=0
= 1

𝑡

0
 

 𝑠0(𝑡) − 𝑠0(0) = 𝑡, from(5) 

 𝑠0(𝑡) ≜ 𝑡 

𝑢0(𝑥, 𝑡) is selected such that 

𝑢0(𝑠0(𝑡), 𝑡) = 0 𝑎𝑛𝑑 𝑢0𝑥
(0, 𝑡) = −𝑒𝑡 

Thus, assuming that 𝑢0(𝑥, 𝑡) = (𝑥 − 𝑠0(𝑡))𝑎 so that only one condition 𝑢0𝑥
(0, 𝑡) = −𝑒𝑡 is needed  

 𝑢0𝑥
(0, 𝑡) = 𝑎 ≜ −𝑒𝑡 

 𝑢0(𝑥, 𝑡) = (𝑥 − 𝑠0(𝑡)) (−𝑒𝑡) 

Hence the nominal solution 

 𝑢0(𝑥, 𝑡) = 𝑒𝑡(𝑠0(𝑡) − 𝑥)                                                                                                                                                        (13) 

 𝑠0(𝑡) = 𝑡                                                                                                                                                                                    (𝟏𝟒) 

Remarks 2 

Based on the problem formulation (1-5) and our choice of the linear operator L of the (ADM), as discussed in (8) 

the following options are firstly discussed 

• On the off chance that one pick L as the whose straight administrators of the issue (1-5) as 𝐿 ≜ 𝐿𝑡 − 𝐿𝑥𝑥 ,            

and N(u)≜0. The converse administrator𝐿−1 is hard to get, subsequently, this choice is discarded. 

• If one can choose 𝐿 ≜ 𝐿𝑡, .The trivial solution is obtained. 

• On setting 𝐿 of (8) as 𝐿 ≜ 𝐿𝑥𝑥 and counting the rest of𝐿𝑡 in the nonlinear part N(u) of (ADM), this alternative is 

adjusted and as takes after: 

5. SOLUTION OF THE PROBLEM (1-5) VIA (ADM) 

Based on remarks (2), write the equation (1) in an operator form  

.𝐿𝑥𝑥𝑢(𝑥, 𝑡) = 𝐿𝑡𝑢(𝑥, 𝑡), 0 < 𝑥 < 𝑠(𝑡), 𝑡 > 0                                                                                                                     (𝟏𝟓) 

Where𝐿𝑥𝑥 =
𝜕2 .

𝜕𝑥2,  𝐿𝑡 =
𝜕.

𝜕𝑡
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Expecting that the reverse administrator 𝐿𝑥𝑥
−1 exists and 

 𝐿𝑥𝑥
−1(. ) = ∫ ∫ (. )𝑑𝑥𝑑𝑥

𝑥

0

𝑥

0
 

Applying the inverse operator 𝐿𝑥𝑥
−1 on both side of the equation (15) 

  𝑢(𝑥, 𝑡) − 𝑢(0, 𝑡) = 𝐿𝑥𝑥
−1(𝐿𝑡𝑢(𝑥, 𝑡)) 

Choosing the initial approximation of 𝑢(𝑥, 𝑡) and 𝑠(𝑡) as given in (13),(14)  

  𝑢0(𝑥, 𝑡) = 𝑒𝑡(𝑠0(𝑡) − 𝑥) 

  𝑠0(𝑡) = 𝑡 

According to the Adomian decomposition method (8), decomposition the unknown function 𝑢(𝑥, 𝑡) as follows:  

  𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + ⋯ 

Where the components 𝑢0(𝑥, 𝑡), 𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡), … are defined as  

  𝑢0(𝑥, 𝑡) = 𝑢(0, 𝑡) = 𝑒𝑡(𝑠0(𝑡) − 𝑥) 

 𝑢1(𝑥, 𝑡) = 𝐿𝑥𝑥
−1(𝐿𝑡𝑢0(𝑥, 𝑡)) = ∫ ∫ ((𝐿𝑡(𝑒𝑡(𝑠0(𝑡) − 𝑥))) 𝑑𝑥𝑑𝑥

𝑥

0

𝑥

0
   

                                                  =  
1

6
𝑥2𝑒𝑡(3𝑡 − 𝑥 + 3)                                                                                                    (𝟏𝟔) 

 𝑢2(𝑥, 𝑡) = 𝐿𝑥𝑥
−1(𝐿𝑡𝑢1(𝑥, 𝑡)) = ∫ ∫ ((𝐿𝑡 (

1

6
𝑥2𝑒𝑡(3𝑡 − 𝑥 + 3))) 𝑑𝑥𝑑𝑥

𝑥

0

𝑥

0
 

                                                                       =
1

120
𝑥4𝑒𝑡(5𝑡 − 𝑥 + 10)                                                                                             (𝟏𝟕) 

 𝑢3(𝑥, 𝑡) = 𝐿𝑥𝑥
−1(𝐿𝑡𝑢2(𝑥, 𝑡)) = ∫ ∫ (

1

120
𝑥4𝑒𝑡(5𝑡 − 𝑥 + 10)) 𝑑𝑥𝑑𝑥

𝑥

0

𝑥

0
 

                                                                 =
1

5040
𝑥6𝑒𝑡(7𝑡 − 𝑥 + 21)                                                                                             (𝟏𝟖) 

⋮ 

Thus  

 𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢1(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) + 𝑢3(𝑥, 𝑡) + ⋯ 

𝑢(𝑥, 𝑡) = 𝑒𝑡(𝑠0(𝑡) − 𝑥) +
1

6
𝑥2𝑒𝑡(3𝑡 − 𝑥 + 3) +

1

120
𝑥4𝑒𝑡(5𝑡 − 𝑥 + 10) +

1

5040
𝑥6𝑒𝑡(7𝑡 − 𝑥 + 21) +

                     …                                                                                                                                                                                          (19) 

From (4), the Stefan condition for this problem is very interesting in testing the results then on setting: 

  −
𝜕𝑢(𝑠(𝑡),𝑡)

𝜕𝑥
=  

𝑑𝑠(𝑡)

𝑑𝑡
 

On integration both side with respect to t from 0 to t one gets 

 ∫
𝑑𝑠(𝑡)

𝑑𝑡
𝑑𝑡 = − ∫

𝜕𝑢(𝑠(𝑡),𝑡)

𝜕𝑥
𝑑𝑡

𝑡

0

𝑡

0
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 𝑠(𝑡) − 𝑠(0) = − ∫
𝜕𝑢(𝑠(𝑡),𝑡)

𝜕𝑥
𝑑𝑡

𝑡

0
, 𝑠(0) ≜ 𝑠0(0) 

  𝑠(𝑡)𝑠(0) − ∫
𝜕𝑢(𝑠(𝑡),𝑡)

𝜕𝑥
𝑑𝑡

𝑡

0
                                                                                                                                                      (𝟐𝟎) 

Decomposing 𝑠(𝑡) as,  

  𝑠(𝑡) = ∑ 𝑠𝑛(𝑡)∞
𝑛=0                                                                                                                                                                   (𝟐𝟏) 

When 𝑠𝑛(𝑡) are suitable choose continuously differentiable function based on the nature of the moving 𝑠(𝑡) which 

is changing smoothly on this problem, by this assumption. Using (4) and (19), we have the following: 

  𝐹(𝑠(𝑡)) =
𝜕𝑢(𝑠(𝑡),𝑡)

𝜕𝑥
 

  𝐹(𝑠0(𝑡)) =
𝑠0(𝑡)𝑒𝑡.(3𝑡−𝑠0(𝑡)+3)

3
−

(𝑠0(𝑡))
2

.𝑒𝑡

6
−

(𝑠0(𝑡))
4

.𝑒𝑡

120
−

(𝑠0(𝑡))
6

.𝑒𝑡

5040
− 𝑒𝑡 +

(𝑠0(𝑡))
3

.𝑒𝑡.(5𝑡−𝑠0(𝑡)+100)

30
+

(𝑠0(𝑡))
5

.𝑒𝑡.(7𝑡−𝑠0(𝑡)+21)

840
+

⋯                                                                                                                                                                                                                    (𝟐𝟐) 

Where the initial approximation as assumed 𝑠0(𝑡) = 𝑡 from (20) and (21), we have got 

 ∑ 𝑠𝑛
∞
𝑛=0 = 𝑠0(0) − ∫ (∑ 𝐴𝑛

∞
𝑛=0 ) 𝑑𝑡

𝑡

0
 

Where 𝐴𝑛 so-called Adomian polynomials for non-linear terms and defined as  

 𝐴0 = 𝐹(𝑠0),                                                      

 𝐴1 =
𝑑𝐹

𝑑𝑠0
𝑠1,                                                        

 𝐴2 =
𝑑𝐹

𝑑𝑠0
𝑠2 +

1

2
𝑠2

1 
𝑑2𝐹

𝑑𝑠0
2,                                           

And so on, the components of 𝑠𝑛(𝑡), 𝑛 ≥ 1, can be completely determined as follows: 

 𝑠1 = ∫ 𝐴0
𝑡

0
𝑑𝑡                                                                                                                                                                                 (𝟐𝟑) 

        𝑠1 = ∫ (
𝑠0(𝑡)𝑒𝑡.(3𝑡−𝑠0(𝑡)+3)

3
−

(𝑠0(𝑡))
2

.𝑒𝑡

6
−

(𝑠0(𝑡))
4

.𝑒𝑡

120
−

(𝑠0(𝑡))
6

.𝑒𝑡

5040
− 𝑒𝑡 +

(𝑠0(𝑡))
3

.𝑒𝑡.(5𝑡−𝑠0(𝑡)+100)

30
+

(𝑠0(𝑡))
5

.𝑒𝑡.(7𝑡−𝑠0(𝑡)+21)

840
+

𝑡

0

⋯ ) 𝑑𝑡 

 𝑠1 = (2𝑒𝑡 + 2𝑡2𝑒𝑡 −
1

2
𝑡3𝑒𝑡 +

5

24
𝑡4𝑒𝑡 −

1

60
𝑡5𝑒𝑡 +

1

144
𝑡6𝑒𝑡 −  3𝑡𝑒𝑡 − 2+. . ) 

And so on. The approximate explicit solution of the moving 𝑠(𝑡)of the problem (1)-(5) is then obtained by: 

    𝑠(𝑡) = 𝑠0 + 𝑠1 + ⋯ 

 s(t) = 0 − (2𝑒𝑡 + 2𝑡2𝑒𝑡 −
1

2
𝑡3𝑒𝑡 +

5

24
𝑡4𝑒𝑡 −

1

60
𝑡5𝑒𝑡 +

1

144
𝑡6𝑒𝑡 −  3𝑡𝑒𝑡 − 2+. . )                                           (24) 

To define an accuracy criterion of this approach, the Stefan condition (4) is used and as follows: 

𝜕𝑢(𝑠(𝑡),𝑡)

𝜕𝑥
=

𝑡𝑒𝑡.(3𝑡−𝑡+3)

3
−

(𝑡)2.𝑒𝑡

6
−

(𝑡)4.𝑒𝑡

120
−

(𝑡)6.𝑒𝑡

5040
− 𝑒𝑡 +

(𝑡)3.𝑒𝑡.(5𝑡−𝑡+100)

30
+

(𝑡)5.𝑒𝑡.(7𝑡−𝑡+21)

840
+ ⋯                            (25) 
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And 

 
𝑑𝑠(𝑡)

𝑑𝑡
= 𝑒𝑡 −

𝑡2𝑒𝑡

2
−

𝑡3𝑒𝑡

3
−

𝑡4𝑒𝑡

8
−

𝑡5𝑒𝑡

40
−

𝑡6𝑒𝑡

144
− 𝑡𝑒𝑡                                                                                                    (26) 

From (25) and (26), the following error criterion is defined and we called it as the absolute error for Stefan 

condition, i.e  

 Absolute error ≜ |−
𝜕𝑢(𝑠(𝑡),𝑡)

𝜕𝑥
−

𝑑𝑠(𝑡)

𝑑𝑡
|                                                                                                                         (27) 

We have used the absolute error (27) and adjusting the number of bases for 𝑢(𝑥, 𝑡) and s(t) as follows:  

 𝑢(𝑥, 𝑡) = ∑ 𝑢𝑖(𝑥, 𝑡)𝑛1
𝑖=0                                                                                                                                                 (28) 

 s(t) = ∑ si(t)n2
i=0                                                                                                                                                            (29) 

Based on the following simulation, the number 𝑛1 and n2 are selected. 

The simulation of descritized time-interval 𝑡 ∈ [0,1], for sometimes for 

𝑛1 = 4, 𝑛2 = 2 is shown below 

Table 1 

t −
𝝏𝒖(𝒔(𝒕), 𝒕)

𝝏𝒙
 

𝒅𝒔(𝒕)

𝒅𝒕
 Absolute Error 

0 1 1 0 

0.01 0.99989916 0.99989882 3.4e-7 

0.02 0.99959330 0.99959053 0.00000277 

0.03 0.99907734 0.99906781 0.00000953 

0.04 0.99834619 0.99832315 0.00002304 

0.05 0.99739471 0.99734882 0.00004589 

0.06 0.99621776 0.99613685 0.00008091 

0.07 0.99481018 0.99467907 0.00013111 

0.08 0.99316682 0.99296706 0.00019976 

0.09 0.99128254 0.99099216 0.00029038 

0.1 0.98915225 0.98874548 0.00040677 

 

Remarks (3) 

• Of the table (1) on selection the number 𝑛1 and 𝑛2, we have checked the error for𝑛1 = 0,1,2,3 𝑛2 = 0,1,           

and then𝑛1 = 4, 𝑛2 = 2 have a reasonable absolute error as show below. Thus 𝑛1 = 4,  𝑛2 = 2 have been adapted 

for simplicity. One can also increase the accuracy by selecting more bases in 𝑢(𝑥, 𝑡) and 𝑠(𝑡), i.e (𝑛1 > 4, 𝑛2 >

2). 

• The approximation solution 𝑢(𝑥, 𝑡) and the moving boundary 𝑠(𝑡) are then (13) and(14), for 𝑛1 = 4,  𝑛2 = 2, 

respectively  

• The comparison have been implemented with exact solution given in [23], where  

 �̃�(𝑥, 𝑡) = 𝑒𝑡−𝑥 − 1                                                                                                                                                     (30) 

 �̃�(𝑡) = 𝑡                                                                                                                                                                       (31) 

http://www.iaset.us/


38                                                                                                                                                                                Ahmed Ismail Mohammed 

 
Impact Factor (JCC): 4.1647                                                                                                                                                                        NAAS Rating 3.45 

From (19) and (24), (30) and (31), the following comparisons are made, where 𝑢(𝑥, 𝑡) and s(t) are computed 

using the present approach. 

Table 2 

Absolute of error 

|�̃�(𝒕) − 𝒔(𝒕)| 

The present method 

𝒏𝟏 = 𝟒, 𝒏𝟐 = 𝟐 

𝒔(𝒕) 

exact �̃�(𝒕) t 

0 0 0 0 

0.00000272 0.01999728 0.02 0.02 

0.0000221 0.03997790 0.04 0.04 

0.00007592 0.05992408 0.06 0.06 

0.00018318 0.07981682 0.08 0.08 

0.00036425 0.09963575 0.1 0.1 

 

 

Figure 1 

Since the absolute error is the error is very good, even with a very small number of bases, the solution 𝑢(𝑥, 𝑡) is 

presented with comparisons for 𝑛1 = 4  and as follows 

Table 3: The Numerical Results for Different Value of x and t, with Comparison 

t x Exact�̃� (x, t) 
𝒖(𝒙, 𝒕) by Present Method 

𝒏𝟏 = 𝟒, 

Absolute of Error 

|�̃� (𝒙, 𝒕) − 𝒖(𝒙, 𝒕)| 
0 0 0 0 0 

 

0.05 -0.04877057 -0.04877031 2.6e-7 

0.10 -0.09516258 -0.09515841 0.00000417 

0.15 -0.13929202 -0.13927089 0.00002113 

0.20 -0.18126924 -0.18120240 0.00006684 

0.25 -0.22119921 -0.22103577 0.00016344 

0.02 0 0.02020134 0.02040402 0.00020268 

 

0.05 -0.02955446 -0.02932600 0.00022846 

0.10 -0.07688365 -0.07657460 0.00030905 

0.15 -0.12190456 -0.12145035 0.00045421 

0.20 -0.16472978 -0.16404946 0.00068032 

0.25 -0.20546639 -0.20445601 0.00101038 

0.04 0 0.04081077 0.04163243 0.00082166 

 

0.05 -0.00995016 -0.00907618 0.00087398 

0.10 -0.05823546 -0.05720113 0.00103433 

0.15 -0.10416586 -0.10285297 0.00131289 

0.20 -0.14785621 -0.14612955 0.00172666 

0.25 -0.18941575 -0.18711618 0.00229957 

0.06 0 0.06183654 0.06371019 0.00187365 
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Table 3: Contd., 

 

0.05 0.01005016 0.01200374 0.00195358 

0.10 -0.03921056 -0.03701367 0.00219689 

0.15 -0.08606881 -0.08345465 0.00261416 

0.20 -0.13064176 -0.12741868 0.00322308 

0.25 -0.17304086 -0.16899234 0.00404852 

0.08 0 0.08328706 0.08666296 0.0033759 

 

0.05 0.03045453 0.03393906 0.00348453 

0.10 -0.01980132 -0.01598723 0.00381409 

0.15 -0.06760618 -0.06323060 0.00437558 

0.20 -0.11307956 -0.10789220 0.00518736 

0.25 -0.15633518 -0.15005988 0.0062753 

0.1 0 0.10517091 0.11051709 0.00534618 

 

0.05 0.05127109 0.05675573 0.00548464 

0.10 0.0 0.00590382 0.00590382 

0.15 -0.04877057 -0.04215540 0.00661517 

0.20 -0.09516258 -0.08752481 0.00763777 

0.25 -0.13929202 -0.13029353 0.00899849 

 

Remarks 4 

• As appear, the comparison on are very good and shows the efficient of the present approach. 

• From table (3) showed the an accuracy is very good, even a small number of a basis for (ADM), 𝑛1 = 4, 𝑛2 = 2. 

To increase the accuracy, one can increase the numbers𝑛1and𝑛2 

 

Figure 2 
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Figure 3 

 

Figure 4 

 

Figure 5 

Remarks 5 

Figures (2)-(5) present the numerical comparison of 𝑢(𝑥, 𝑡) and �̃�(𝑥, 𝑡) for different value of time  
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7. CONCLUSIONS 

The Adomian Decomposition strategy is effectively connected to locate a surmised unequivocal articulation of 

temperature dissemination in fluid locale and the interface position of a Stefan issue (1)- (5), respectively, the underlying 

approximations of u(x, t) and s(t) are selected to accomplish limit state of the first issue (1)- (5) and moving limit 

condition.  

The choice of the ostensible answer for u(x, t) and s(t) by choosing on fitting capacity, fulfilling the limit 

condition and Stefan condition encourages us to settle such a kind of moving the limit esteem issue effectively and speak to 

an upgraded approach for such sort of issues. 
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